Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
PLoS One ; 16(12): e0261333, 2021.
Article in English | MEDLINE | ID: covidwho-1779728

ABSTRACT

Allergic airway disease is the most common chronic airway inflammatory disorder in developed countries. House dust mite, cockroach, and mold are the leading allergens in most tropical and subtropical countries, including Taiwan. As allergen avoidance is difficult for patients allergic to these perennial indoor allergens, allergen-specific immunotherapy (ASIT) is the only available allergen-specific and disease-modifying treatment. However, for patients sensitized to multiple allergens, ASIT using each corresponding allergen is cumbersome. In the present study, we developed a recombinant L. lactis vaccine against the three most common indoor aeroallergens and investigated its effectiveness for preventing respiratory allergy and safety in mice. Three recombinant clones of Der p 2 (mite), Per a 2 (roach), and Cla c 14 (mold) were constructed individually in pNZ8149 vector and then electroporated into host strain L.lactis NZ3900. BALB/c mice were fed with the triple vaccine 5 times per week for 4 weeks prior to sensitization. The effectiveness and safety profile were then determined. Oral administration of the triple vaccine significantly alleviated allergen-induced airway hyper-responsiveness in the vaccinated mice. The allergen-specific IgG2a was upregulated. IL-4 and IL-13 mRNA expressions as well as inflammatory cell infiltration in the lungs decreased significantly in the vaccinated groups. No body weight loss or abnormal findings in the liver and kidneys were found in any of the groups of mice. This is the first report to describe a triple-aeroallergen vaccine using a food-grade lactococcal expression system. We developed a convenient oral delivery system and intend to extend this research to develop a vaccination that can be self-administered at home by patients.


Subject(s)
Allergens/chemistry , Asthma/immunology , Desensitization, Immunologic/methods , Hypersensitivity/metabolism , Lactococcus lactis , Vaccines , Animals , Antigens, Dermatophagoides/chemistry , Antigens, Dermatophagoides/immunology , Arthropod Proteins/chemistry , Electroporation , Female , Fermentation , Insect Proteins , Mice , Mice, Inbred BALB C , Pyroglyphidae/immunology , Respiratory Hypersensitivity/prevention & control
2.
Int J Biol Macromol ; 164: 4022-4031, 2020 Dec 01.
Article in English | MEDLINE | ID: covidwho-739832

ABSTRACT

Bacterial permeability family member A1 (BPIFA1) is one of the most abundant proteins present in normal airway surface liquid (ASL). It is known to be diminished in asthmatic patients' sputum, which causes airway hyperresponsiveness (AHR). What is currently unclear is how environmental factors, such as allergens' impact on BPIFA1's abundance and functions in the context of allergic asthma. House dust mite (HDM) is a predominant domestic source of aeroallergens. The group of proteases found in HDM is thought to cleave multiple cellular protective mechanisms, and therefore foster the development of allergic asthma. Here, we show that BPIFA1 is cleaved by HDM proteases in a time-, dose-, and temperature-dependent manner. We have also shown the main component in HDM that is responsible for BPIFA1's degradation is Der p1. Fragmented BPIFA1 failed to bind E. coli lipopolysaccharide (LPS), and hence elevated TNFα and IL-6 secretion in human whole blood. BPIFA1 degradation is also observed in vivo in bronchoalveolar fluid (BALF) of mice which are intranasally instilled with HDM. These data suggest that proteases associated with environmental allergens such as HDM cleave BPIFA1 and therefore impair its immune modulator function.


Subject(s)
Antigens, Dermatophagoides/metabolism , Arthropod Proteins/metabolism , Cysteine Endopeptidases/metabolism , Glycoproteins/metabolism , Immunomodulation , Phosphoproteins/metabolism , Allergens/immunology , Animals , Antigens, Dermatophagoides/immunology , Arthropod Proteins/immunology , Calcium/metabolism , Calcium Signaling , Cell Line , Cysteine Endopeptidases/immunology , Cysteine Proteinase Inhibitors/pharmacology , Cytokines/metabolism , Glycoproteins/pharmacology , Humans , Immunomodulation/drug effects , Inflammation Mediators/metabolism , Mice , Phosphoproteins/pharmacology , Proteolysis/drug effects , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL